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ABSTRACT 
 
A computational model based on classic homogenous nucleation theory, thermodynamic analysis 
and size-grouping collision simulation, has been developed to study steel deoxidation by aluminum 
in a low-carbon aluminum-killed steel ladle.  The model calculates the nucleation and evolution of 
the alumina inclusion size distribution due to Ostwald ripening, Brownian collision and turbulent 
collision. Starting from rapid supersaturation with Al2O3 “pseudo-molecules”, homogeneous 
nucleation is very fast, occurring mainly between 1μs and 10μs. The resulting stable inclusion nuclei 
are predicted to be only about 10-20 Å in diameter. Inclusions smaller than 1μm in radius, grow 
mainly by diffusion of pseudo-molecules and Brownian collision, and tend to be spherical.  
Inclusions larger than 2μm grow mainly by turbulent collisions, and tend to form clusters which 
retain features with minimum sizes of 1~2μm. The inclusion size distribution can reach 0.1~1μm by 
6s and 0.1~36μm by 100s. Stirring power greatly affects the inclusion size distribution. It is 
recommended to first stir vigorously to encourage the collision of small inclusions into large ones, 
followed by a “final stir” that slowly recirculates the steel to facilitate their removal into the slag, 
while minimizing the generation of more large inclusions via collisions. 
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INTRODUCTION 
 
The demand for cleaner steel increases every year. Steel cleanliness depends on the amount, 
morphology and size distribution of the non-metallic inclusions it contains. There is a growing need 
to understand and predict the fundamental mechanisms of the formation and removal of inclusion 
particles from steel during deoxidation and refining operations in ladles and other metallurgical 
vessels. Inclusions arise from many sources, including deoxidation, reoxidation, slag entrapment, 
chemical reactions, and exogenous sources. [1-8] Their origin can be identified from their composition 
and shape in the final product, which ranges from dendritic alumina (Fig. 1a [9]), formed during 
deoxidation with a high oxygen content, coral structures formed by Ostwald ripening of dendritic 
inclusions (Fig. 1b [10]), clusters of particles, formed by collisions of small alumina spheres (Fig. 1c 
[11]), and large spheres of complex oxides, from liquid slag entrainment (Fig. 1d [8]).  The size of the 
central globule, secondary dendrite arms, or the individual spherical inclusions in an inclusion cluster 
of indigenous alumina inclusions in Low Carbon Al-Killed (LCAK) steel [9-22] is consistently 1~4 µm 
(Fig. 2).    
 
Inclusion evolution and removal is affected by many complex phenomena, including the amount, 
morphology, density, composition, and delivery method of the deoxidant, steel composition, vessel 
geometry, transport by turbulent flow, interfacial tension, diffusion coefficient, the initial oxygen 
content, collisions with both bubbles and other particles, reoxidation, temperature, and the properties 
of the slag layer and vessel walls where inclusions may be removed or generated. Shortly after 
adding the deoxidizer, the inclusion particles nucleate and quickly grow. Inclusion growth can be 
controlled by diffusion of the deoxidization elements and oxygen [12, 23-27], “Ostwald-ripening”[12, 23, 

27-29], Brownian collisions [12, 23-25, 27], turbulent collision [12, 23, 24, 28] and / or Stokes collision [23, 25, 27-

29].  With improved computer power, better computational models of these phenomena are being 
developed.  
 
This paper presents recent work to simulate the nucleation, growth, transport, and removal of 
alumina particles during steel deoxidation.  Specifically, the evolution of the number and size 
distribution of alumina clusters are computed during steel deoxidation in a typical ladle refining 
operation.  The contribution of different growth mechanisms to inclusion growth and the start and 
evolution of inclusion size distribution are investigated.  Finally, the implications on operations such 
as stirring and refining are discussed. 
 

NUCLEATION AND GROWTH MODELS 
 
The current computational model simulates the nucleation and growth of alumina inclusions during 
steel deoxidation, starting with a solute of “pseudo-molecules” of Al2O3.  The assumed time-
dependent concentration of pseudo-molecules evolves into a size distribution of molecular groups via 
diffusion and dissolution. If enough pseudo-molecules gather to form a stable nucleus, then 
nucleation (precipitation) occurs, meaning that the particle is stable.  The stable inclusions can grow 
both by continued diffusion of pseudo-molecules, and by collision with other nucleated inclusions, 
via both Brownian and turbulent motion. The following assumptions are included in the model. 
 

 The Gibbs-Thomson equation [30] holds for all size particles; [31] 
 The basic unit of the model is the “pseudo-molecule”.  
 Ostwald-Ripening is considered, as both diffusion and dissolution of pseudo-molecules are 

calculated throughout the process.  
 The system is isothermal; 
 The pseudo-molecules and clusters (inclusions) are spherical; 
 The interfacial tension is independent of particle size. 
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Expressing particle size by the number of Al2O3 molecules in the particle, i, the evolution of the 
number of pseudo-molecules / particles of each size, Ni, is governed by the following population 
balance relations: 
 

Cii <≤2  (before nucleation) 
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There are serious computational issues involved in solving Eqs. (1) and (2), including both 
computation time and memory storage.  Because the model is designed to simulate particle 
interactions from nucleation (concerned with individual molecules with sizes on the order of 
nanometers) up to the collision of real inclusion particles (on the order of microns), the particle size 
range varies over three orders of magnitude, containing from 1 to ~1013 molecules per particle.  
Solving Eqs. 1 and 2 with a simple linear scale is prohibitive for this real system. To render this 
challenging problem feasible to solve, a formulation is employed that can accurately handle such 
wide size ranges: the Size Grouping Model.  
 

SIZE GROUPING MODEL FORMULATION 
 
The concept of this model is shown schematically in figure 3. In this model, the inclusions are 
divided into groups (group number k ) with average particle volumes related by the following ratio: 

V
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where 2<RV<3 with a typical value of 2.5.  Other choices of RV require slight changes to the 
following equations.  With the current assumption, the radius and the volume of each group are 
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where r1 is the radius of a pseudo-molecule. According to Mukai et al, Vm=3.433×10-5 m3/mol, so 
r1=2.39×10-10 m. [32] 
 
The typical radius of particles between groups j-1 and j is rj-1,j, which is the mean of rj-1 and rj, i.e.,  
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Population Balance Equations 
 
The population balance of inclusions in size group j is affected by the following collisions, shown in 
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Fig. 3: 
1. Inclusion j collides with inclusion j-1 or smaller, generating new inclusions still in group j, but 

with larger volume;   
2. Inclusion j-1 collides with inclusion j-1, generating new j inclusions, but with smaller volume; 
3. Inclusion j collides with inclusions larger than j-1, generating new inclusions larger than j  (and 

thereby decreasing the number of inclusions in group j) 
 
As an example, for j=10, Vj-1,j=2498V1, Vj-1+Vj-1=3052V1, Vj=3814V1, Vj+Vj-1=5340V1, 
Vj,j+1=6246V1, Vj+1=9536V1. Therefore, size j-1 colliding with j-1 generates new inclusions in group 
j; j colliding with j-1 generates new inclusions still in group j. This finding holds for at least 
2.1≤RV≤2.9. 
 
The relationship between size group k, the number of Al2O3 molecules it contains, and its particle 
radius are summarized in Table I. Thus, a calculation with 50 groups is enough to span the complete 
size range of inclusions found in molten steel up to 750 µm.  
 
The evolution equations depend on the size group of the particle relative to the critical size group jc 
for a miminum-sized stable particle:  
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The rate constant for the diffusion of pseudo-molecules, D
iβ , is expressed by [31] 

i
D
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Particle collisions are governed by the following rate constants 
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where B
ijβ  represents Brownian collision [33] and T

ijβ  represents turbulent collision, based on 
Saffman’s model [34].  The coagulation coefficient, φ, is a collision probability function based on the 
Hamaker constant, inclusion size, etc. [22], but is assumed here to equal 1 for this simple nucleation 
model. This assumption is valid for very small particles in water system and almost all size 
inclusions in molten steel system. [35] 
 
Ostwald-ripening involves both growth from diffusion (governed by βi

D) and shrinkage from 
dissolution, which is governed by the dissociation rate constant αi (m-2s-1).  The dissociation rate 
constant is found by tracking the diffusion of pseudo-molecules, βD,i.  Unstable particles, (i<ic) can 
grow or shrink only due to diffusion, while stable inclusion particles, (i>ic and r>rc) evolve according 
to both diffusion and collision. According to Kampmann [31], the molecule dissociation rate constant 
α is related to the rate constant for pseudo-molecule diffusion by  

11 NA iii βα =       (13) 
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The Gibbs-Thomson equation reads in the present notation [36] 
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If fractal theory is included in the model to consider the effect of alumina cluster morphology, the 
radius of an alumina cluster can be given by [37] 

1
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where M is the number of separate particles in the cluster ⎯ alumina molecules for the current 
investigation.  For the current study, 1−= i
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where Df is the fractal dimension. The value of Df is 1.3-1.8 [38] for  microstructural features observed 
in two dimensions, but is actually 2.0-2.5 [39] for three dimensional observations. Df is assumed to be 
3 in this work, and in this work rj refers to the equivalent radius sphere, so that its density is that of 
alumina. The effect of the radius and density of alumina clusters has been studied by Miki and 
Thomas [37], and will be investigated further in future work.  
 
Dimensionless versions of Eq.(8) and (9) can be obtained by making the following substitutions:  
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According to classical homogenous nucleation theory, the critical radius of nucleus Cr  is [12] 
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If Crr > , nucleation occurs, and stable particles precipitate and start to grow. According to Eq. (19), 
the critical size of nucleus decreases with increasing supersaturaion Π and decreasing surface tension, 
σ.  
 
If jc is the critical group number, beyond which nucleation occurs, the number of molecules in jc 
inclusions is: 
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On the other hand, Eq.(19) also yields that the number of molecules in jc inclusions is: 
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Eq.(20) should equal to Eq.(21), which gives 
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For alumina inclusions, σ=0.5N/m, Rv=0.5, and Π=40 yield 2σVm/(RTr1)=9.22 and jc=4, which 
means that the critical size for nucleation is in group 4, including Rv4-1=64 alumina molecules.  
 
Supersaturation Model 
 
The supersaturation of free Al2O3 molecules, Π, in Eq.(19) is represented by 
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N
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where N1,eq=2.634×1023 m–3 corresponds to 3ppm dissolved oxygen in steel at equilibrium. 
According to a mass balance, the supersaturation can be expressed by 
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where NS is the total number of Al2O3 molecules including those in nucleated inclusions, which is 
expressed as a function of dimensionless time by Eq.(25) [31].  This equation defines how fast the 
Al2O3 molecules appear and disperse in the liquid steel after the deoxidizer-Al is added.  

⎥
⎦

⎤
⎢
⎣

⎡
−−= )exp(0.1)(

*
*
,

**

τ
tNtN eqsS ,                                                 (25) 

where NS,eq is the equilibrium total number of Al2O3 molecules that form in the liquid steel, 
corresponding to the initial oxygen content before deoxidation.  
 
A time constant τ is introduced to account for the time needed for a lump of aluminum alloy added to 
the ladle to dissolve into aluminum atoms, after it is released from the steel shell that solidifies 
around it and later melts. [40] This constant defines the initial pseudo-molecular alumina 
concentration, due to reaction and diffusion of the deoxidant.  The value of τ depends on the 
dissolution and diffusion of aluminum into molten steel, which requires consideration of the flow 
conditions.   

 
A three-dimensional multiphase fluid-flow computation was performed to investigate flow and 
aluminum dissolution in a typical 300tonne argon-stirred ladle (argon flow rate is 0.5 Nm3/min, ladle 
height is 4.5m).  A finite-difference model based on FLUENT [41] is used to solve two sets of Navier-
Stokes equations for coupled transport of liquid and argon gas with the standard k-ε model to 
account for turbulence in the liquid phase [42, 43]. The steel flow pattern is shown in Figure 4a).  The 
dissolution of an aluminum lump at the ladle center is computed using a species diffusion - transport 
model for Al concentration, with the effective diffusion coefficient based on the standard k-ε model 
with Schmidt number of 0.9 [42, 43]. Results are shown in figure 4b). Figure 5 shows that the 
aluminum mole fraction distribution near the surface of the aluminum lump increases very rapidly as 
the lump dissolves into the surrounding molten steel. The dissolution occurs so quickly that the 
details of of the full-scale flow pattern and location of the alloy are secondary effects.  Figure 6 
shows that the volume of dissolved aluminum increases with time according to:  

7.085.0 DD tV ⋅=       (26) 
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Eqs.(8)-(9) are solved using the Runge-Kutta method. The following material properties are chosen 
to model steel deoxidation at 1823K: D1=2.5×10 – 9 m2/s (diffusion coefficient of oxygen in liquid 
steel, ( )TD 314.881900exp1059.5 7

1 −×= − ) [44], ρL=7000 kg/m3, ρp =2700 kg/m3, μL=0.0067 kg.m –

1s –1. The surface tension between Al2O3 particles and liquid steel is 0.5 N/m [45].  For 
N1,eq=2.634×1023 m – 3 corresponding to the 3ppm dissolved oxygen in steel and D

1β =7.50×10-18 
m3/s,  

t*=1.98×106t       (27) 
Eq.(25) therefore can be rewritten into  
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Now we assume  
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Substituting Eq(26), (27), and (29) into Eq.(28) gives 
Dt51087.2 ×=τ      (30) 

 
RESULTS  

 
The model was applied to simulate aluminum deoxidation of a typical steel-oxygen refining system, 
where previous measurements and calculations were available.  The vessel was a 50 tonne ladle of 
low-carbon steel refined in an ASEA-SKF furnace.[46]  The ladle had 2.3m diameter and 1.7m depth, 
and a turbulent energy dissipation rate in the melt of 0.01224 m2/s3 (856.8 erg/cm3s) [?ref?]. The 
total oxygen before adding aluminum is around 300 ppm and the final free oxygen is about 3 ppm, 
which corresponds to a 46kg aluminum addition and gives NS,eq=100×N1,eq. Thus, *

,eqsN =100. If the 
aluminum is spherical lumps with diameter of 0.11m, each lump is 5.2×10-4 m3 in volume, so the 
dissolution time is 2.59×10-5 s (Eq.(26)), and τ is around 10 (Eq.(30)). This value was also used by 
Kampmann et al [31].  
 
Mechanisms of Inclusion Growth at Different Size Ranges  
 
A comparison of the rate constants for diffusion and collision of pseudo-molecules enables the 
following three length scales to be defined (Fig. 7): 
 
• Brownian scale lB<1μm: The growth of inclusions with radii in this range is controlled by diffusion 
of pseudo-molecules and Brownian collision. The irregular thermal movement that characterizes 
Brownian collisions is independent of fluid flow, and is not directional. Thus the inclusions tend to 
grow in every direction, leading to a spherical particle; 
• Turbulent scale lT: This scale is on the order of le=(ν3/ε)1/4, the characteristic size of the smallest 
turbulent eddy, which is around 90μm for the current system. Inclusions with radii in this range grow 
by turbulent collisions, and the diffusion of pseudo-molecules is not as important, due to their low 
concentration. Solid inclusions in this range tend to retain smallest features of 1~4μm in diameter as 
shown in Fig.2.  Because at this scale, the diffusion of particles into a single mass is so much slower 
than collisions with new particles, clusters arise, such as observed in Fig. 1c).   
• Intermediate scale lB~lT:  The growth of inclusions in this intermediate size-range is controlled both 
by the diffusion of pseudo-molecules and by collisions (Brownian collision and turbulent collision).  
The great variation in rate constants shown in Fig. 7 indicates that this particle size range, where 
these two mechanisms are similar in importance, is very small: from 2~4μm.   
 



Zhang, Thomas, and Pluschkell, will be submitted to Steel Research International,  

 7

The development of inclusion morphology is therefore summarized as follows: Initial inclusions 
grow spherically to 1 to 2 μm in radii due to diffusion and Brownian collision after nucleation.  
When there is a shortage of nuclei, single particles can grow into large dendritic structures due to 
unstable growth into high concentrations of diffusing pseudo-molecules.  Otherwise, clusters of 
particles will form due to turbulent collisions resulting from flowing liquid steel. With time, the 
surface contours of all particles become progressively smoother due to the diffusion process called 
“Ostwald ripening”.  These phenomena are investigated in more detail in the next section. 
 
Incubation, Nucleation and Growth of Inclusions 
 
Figure 8 tracks the supersaturation Π , the number of particles ζ and the critical size of nucleus ic as 
a function of time. After aluminum addition, the aluminum and oxygen react to form pseudo-
molecules. Groups of pseudo-molecules are generated from diffusion. With the further addition and 
dispersion of aluminum, the concentration of pseudo-molecules continues to increase. At time t=t2, 
the radii of some groups of pseudo-molecules reach rc, so nucleation begins. Particles precipitate and 
start to grow. The calculations indicate that this incubation period, from 0~t2 is very short, only 
0.53μs. At t=t2, the first particle appearing in the melt has ic=42 (r=8.3 Å). Thus i=42 is the largest 
group of pseudo-molecules; all larger groups nucleate to become particles. After time t2, smaller 
inclusions can precipitate and grow by diffusion of pseudo-molecules, and may collide with other 
inclusions.  This starts a size distribution range. The supersaturation Π gradually increases from zero 
to its maximum (46.7) at time t*

3 =8.07 (t3=3.40μs).  This corresponds to the decrease in critical 
nucleus size to its smallest-sized stable nucleus (rc =5.15Å, containing i=10 pseudo-molecules) at 
time t3. Groups containing less than 10 pseudo-molecules are not stable particles. Nucleation is 
possible only during the time period t*

2~t*
5 (0.53~6.58μs), when the critical nucleus size is smaller 

than the largest sized group of pseudo-molecules (forming by random diffusion).  
 
Figure 9 shows a histogram of the inclusion size distribution at different times, assuming that all 
inclusions with radii larger than 36μm are instantly removed to the top slag. With increasing time, 
the size distribution range grows, reaching 0.1~1μm at 6s and 0.1~36μm at 100s. When t=6s, the 
largest inclusion is around 2 μm diameter, which agrees roughly with the industrial measurements 
[47]. It takes about 100sec for the inclusions to grow to several tens of microns, which agrees well 
with the study of Kawawa et al [25].  
 
Figure 10 indicates that with increasing time, the number of smaller inclusions drops, and more new 
larger inclusions are generated, mainly by collision. The inclusion concentration evolves with time.  
Each cluster size increases to a maximum value and then slowly decreases. After 720 seconds, the 
total oxygen concentration in the liquid steel is predicted to decrease to ~ 20 ppm, which agrees with 
the measurements of Nakanishi (figure 11). [46]  The implications of these findings on operation of 
refining vessels are investigated in the next section. 
 
Effect of Stirring Power on Inclusion Growth and Removal 
 
Stirring power is an important parameter controlling the steel refining process. Strong mixing is 
required to encourage favorable metallurgical reactions, to bring the metal and slag into contact at 
their interface (e.g. desulphurisation, dephosphorisation, deoxidation, and inclusion removal).  Less 
mixing is required, however, to avoid detrimental phenomena, such as maintenance of an unbroken 
slag layer, and avoiding erosion of the vessel refractories. The effect of stirring power on the oxygen 
removal rate constant is shown in Fig. 12 [48, 49]. Excessively strong stirring is detrimental as the 
upward circulation of steel onto the slag layer may expose an “eye” region of the steel surface to 
reoxidation and the lining may be seriously eroded. Table II gives the specific stirring powers for 
different refining process, based on analysis of literature data.  Natural convection in the ladle and 
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flow through the tundish produces the lowest mixing power, while vigorous stirring in NK-PERM 
vessels has the largest.  Argon gas bubbling, DH, and steel tapping are intermediate. The SEN 
delivering steel into the mold has a similar stirring power to the most vigorous refining processes, 
although the time is very short. 
 
The calculated effect of stirring power on inclusion size distribution is shown in Fig. 13, which 
indicates that increasing stirring power generates more large inclusions in the bulk.  If these 
inclusions can be removed into the slag, this improves cleanliness.  This is bad for steel cleanliness, 
however, if the stirring power is high at the end of refining, when the new large inclusions have no 
time to be removed. Therefore, the recommended practice is to first stir vigorously, to encourage the 
collision of small inclusions into large ones, followed by a final stir or “rinse” that slowly 
recirculates the steel to facilitate their removal into the slag while minimizing the generation of more 
large inclusions via collisions.  
 

Ladle Mixing Times  
 
The constant τ in Eq. (25) quantifies the time for aluminum dissolution. Solid aluminum is added 
into the molten steel, where it eventually melts and is released to dissolve into free aluminum atoms. 
These aluminum atoms react with the free oxygen in the molten steel to generate alumina pseudo-
molecules which evolve into inclusions. The calculated nucleation time is in the order of only 1μs, 
which is very fast compared with the mixing of aluminum atoms in the molten steel. Figure 14 
shows the aluminum dispersion in an argon stirred ladle of molten steel continued from Fig.4, which 
indicates that the mixing process is ~ 8 orders of magnitude slower than the nucleation process.  
 
The aluminum mass fraction changes with time at different points as shown in Figure 15. The 
mixing time is defined as the time at which the mass fraction reaches 95% of the infinite average 
fraction. The calculated mixing times vary greatly at different points in the ladle, as shown in 
Figures 16 and 17. Within this uncertainty, the computations in Fig. 17 agree with previous 
measurements. [50] Inclusion trajectories in this argon-stirred ladle are shown in Fig.16, which 
indicates a long moving path length before inclusions reach the top surface to be removed.  
Increasing stirring power naturally decreases the mixing time, as shown in Fig. 17. 
 

FUTURE WORK 
 
Fluid flow, mixing and inclusion motion at the scale of the refining vessel all should be fully 
incorporated in further simulations of inclusion nucleation, growth, transport, and removal. To do 
this, the turbulent multiphase Navier-Stokes equations should be solved together with the following 
transport equations for each inclusion size group: 

( ) ( )[ ] j
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i
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NVu
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⎞
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⎝

⎛
∂

∂

∂
∂

−+
∂
∂

+
∂
∂

,    (32) 

where Nj is the concentration of inclusions (with radius rj) in number per m3 of molten steel. 
Transport depends on the molten steel velocities, ui and the terminal rising velocity of the inclusions, 
VT. For small particles, Stokes flow can be assumed, so VT is defined as follows (gravitational force 
is downward in z direction): 

( ) 22
0 0

9
p i

T ,i

gr
V ,   ,   

ρ ρ
μ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

     (33) 

The effective diffusion coefficient, Deff, depends on the local effective viscosity, μeff, which is 
obtained from the turbulence model.  
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tp
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DD
ρ
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+= 1       (34) 

where D1 is the laminar (molecular) diffusivity, m2/s; Sct is the turbulent Schmidt number.  
 
The source term at RHS of Eq.(32) should be represented by  
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Eqs. (35) and (36) are from Eqs.(8) and (9).  
 

CONCLUSIONS  
 

1. A computational model based on classic homogenous nucleation theory, thermodynamic 
analysis and population balance equations, has been developed to study steel deoxidation by 
aluminum in a low carbon aluminum-killed steel ladle. The model calculates the nucleation 
and time evolution of the alumina inclusion size distribution due to Ostwald ripening 
(diffusion), Brownian collision and turbulent collision.  

2. For the given conditions, the nucleation is very fast, occurring mainly between 1μs and 10μs. 
The stable inclusion nuclei are predicted to be only about 10-20 Å in diameter (containing on 
the order of 10-100 pseudo-molecules of alumina). After this time, the size distribution of the 
stable inclusion particles grows by the diffusion / dissolution of pseudo-molecules and by 
collisions. The inclusion size distribution grows from 0.1~1μm radius particles at 6s to 
0.1~36μm at 100s. .  

3. The growth of inclusions smaller than 1μm, is mainly controlled by diffusion of pseudo-
molecules and Brownian collision.  Inclusions in this range tend to be spherical, due to the 
rapid Ostwald ripening.  The growth of inclusions larger than 2μm is mainly controlled by 
turbulent collisions. Inclusions in this range tend to form clusters which retain minimum 
feature sizes of 1~2μm.  

4. Computations of the inclusion size range in a ladle roughly agree with experimental 
measurements.  

5. The inclusion size distribution evolves to form larger inclusions with increasing stirring 
power. Actual steel refining processes have a range of different stirring powers. 

6. For optimal inclusion removal, it is recommended to first stir vigorously, to encourage the 
collision of small inclusions into large ones.  This should be followed by a final stir that 
slowly recirculates the steel to facilitate their removal into the slag while minimizing the 
generation of more large inclusions via collisions.  

7. Mixing simulations reveal that mixing requires several hundred seconds, depending on 
location in the ladle and stirring power.  This is 8 orders of magnitude slower than nucleation 
phenomena. 

8. Further studies should be coupled with fluid flow and include the effects of deoxidant 
composition (Si and Al), deoxidant flow transport, interfacial tension, diffusion coefficient, 
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the initial oxygen content, and temperature on inclusion nucleation and growth. In addition, 
the phenomena of bubble-related collisions, cluster morphology, reoxidation, realistic 
inclusion transport and collision in the turbulent flowing liquid, and removal at the top slag 
layer and walls on inclusion evolution also need investigation before steel deoxidation and 
inclusion phenomena can be fully understood. 

 
 
 

NOMENCLATURE 
 

Ai The surface area of particle i, m2 

D1 the diffusion coefficient of the pseudo-molecules in liquid , m2s – 1   

Df Fractal dimension 
i, j The particle size, namely, this particle is comprised of i pseudo-molecules or j 

pseudo-molecules  
ic the critical size for nucleus, m 
k The Boltzmann constant, J.K – 1  

le The size of the smallest eddy in turbulence flow, m 
lB,lI,lT Brownian scale, Intermediate scale, and turbulence scale respectively, m 
M The number of separate particles in a cluster 
NA The Avogadro number, mol –1  

N1 The concentration of the dissolved pseudo-molecules, m – 3 
N1,eq The concentration of the dissolved pseudo-molecules at equilibrium, m – 3  

Ni The average concentration of the particle i , m – 3  

NS(t) The total number of molecules including those in particles in the molten steel, m-3 

NS,eq The total number of molecules including those in particles in the molten steel at the 
equilibrium state, m-3 

R Gas constant, 8.314 J.k-1mol-1 

Rv The ratio of volume of inclusions in two neighboring groups 
r The particle radius, m 
rc The critical radius for nucleation, m 

Cluster
ir  Radius of aluminum cluster, m 

ri The radii of the particle i  , m 
r1 the radius of the pseudo-molecule, m 
T The absolute temperature, K 
t Time, s 
t2 Time for the beginning of nucleation, s 
t3 Time at Π=Πmax, s  
t5 Time for the ending of nucleation period, s 
tD Dissolution time of aluminum in molten steel, s 
t* The dimensionless time 
Vi The typical volume of inclusions in group I, m3 
VD Dissolution volume of aluminum in molten steel, m3 

Vm Molecular volume of alumina inclusions, m3/mol 
αi The number of pseudo-molecules which dissociate per unit time from unit area of a 

particle of size group i , m – 2s – 1 
βD

i The diffusion rate constant of the molecules m3 s –1   

βB
ij, βT

ij Brownian and turbulent collision rate constant, m3 s –1   
δij The Kronecker’s delta function (δij=1 for i=j, and (δij=1 for i≠j ) 
ε The turbulent energy dissipation rate, m2s –3  
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Π The supersaturation of the parents phase, or the dimensionless concentration of 
pseudo-molecules  

μ The viscosity of the liquid, kg.m –1 s –1  

φij The coagulation coefficient of inclusions i and j[22] 
ρL The density of liquid, kg.m – 3  

ρp The density of particles, kg.m – 3  

σ The interfacial tension between alumina and liquid steel, N.m –1  

τ Dimensionless time constant for aluminum dissolution and diffusion 
ζ The total dimensionless number density of growing particles 
ν The viscosity of the liquid, m2s –1  

  
Superscripts  
* Dimensionless value 
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Table I The group number and its radius in size group model  

Group No. ( k ) Monomers contained 
kr   (μm) 

1 2.50=1 2.39×10 – 4  

2 2.51=2.5 3.24×10 – 4 
3 2.52=6.25 4.40×10 – 4 
10 2.59=3.8×103 3.73×10 – 3 
20 2.519=3.6×107 7.91×10 – 2 
30 2.529=3.5×1011 1.68 
40 2.539=3.3×1015 35.61 
50 2.549=3.2×1019 755.24 
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Table II Stirring powers for different processes and regimes 
 

Stirring pattern Power (Watt/ton) 
Argon gas bubbling [43, 45]  2-130 [43], 43-214 [45] 
Tapping steel [45] 17-286  
DH [45] 72-100 
ASEA-SKF [43, 45, 46] 7-29 [45], 10-250 [43], 200-600 [46] 
PM (Pulsation Mixing) [45] 10 
RH [44, 45] 86-114 [45], 200-400 (conventional) [44], 500-

3000 (NK-PERM) [44] 
VOD [44] 10-400 (conventional), 100-800 (NK-PERM) 
Outlet of SEN in continuous casting mold [46] 470-800 
Tundish inlet zone [46] 10-50 
60 ton ladle [46] 1-50 
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Fig. 1 Alumina inclusion morphologies: a) dendritic cluster [9], b) coral structure [10] c) alumina 
cluster [11], and d) slag inclusions [8]  
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Fig. 2 The smallest size feature of inclusions as shown in Fig.1 a), b) and c). 
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Fig.3 Schematic of inclusion population balance for the group j 
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Fig.4 Fluid flow and aluminum dissolution in a 300 argon-stirred steel ladle 

 

t=0s t=0.05s 



Zhang, Thomas, and Pluschkell, will be submitted to Steel Research International,  

 20

 
 

-0.4 -0.2 0.0 0.2 0.4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

 

 

M
ol

e 
Fr

ac
tio

n 
of

 A
lu

m
in

um
 

Distance away from axis (m)

  Time (s)
 0.001
 0.010
 0.020
 0.050
 0.100
 0.200

10mm below the top surface
Diameter of aluminum lump: 0.2m

 
Fig. 5 The dissolution and transport of aluminum near the first adding place  
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Fig. 6 The dissolved volume of aluminum as a function of time 
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Fig. 7 Comparison of pseudo-molecule diffusion rate constant and collision rate constants 



Zhang, Thomas, and Pluschkell, will be submitted to Steel Research International,  

 23

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Π.max 

0.01 0.1 1 10 100
0

10
20
30
40
50
60
70
80
90

100
110

 

 

Π

Π=1 

Maximum 
fluctuation 

t*
1 t*

3 

0.01 0.1 1 10 100
100

101

102

103

104

105

106

 

t*5
t*2

i c

t*

iC,min 

0.01 0.1 1 10 100

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

Stages:
I  : Incubation Period (0<t*<t*2, 0<t*<1.25)
II : Nucleation Period (t*2<t*<t*5, 1.25<t*<15.6)      
III: Growth Period (t*>t*2, t*>1.25)

ζ

I II 
III 

N*
S 

ζ 

Π 

iC 

Fig. 8 Calculated ζ, Π, ic versus time 



Zhang, Thomas, and Pluschkell, will be submitted to Steel Research International,  

 24

 
 
 
 
 

0.1 1 10
100

103

106

109

1012

1015

1018
 N

i (
m

-3
)

40

Ni (m
-3)

 

 

  t  (s)
 1
 6
 100

ri (μm)
 

Fig. 9 Inclusion size distribution as a function of time 
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Fig.10 Inclusion concentration versus time 
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Fig.11 Comparison of total oxygen between calculation and experiment 
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Fig. 12 Effect of stirring power on deoxidation rate constant 
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Fig. 13 Effect of stirring power on inclusion size distribution 
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Fig.14 Aluminum mass fraction distribution in ladle at different time 

t=50s t=100s 
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Fig.15 Al dispersion in molten steel of a gas-stirred ladle 
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Fig.16 Inclusion trajectories in argon stirred ladle 
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Fig.17 Mixing time deceasing stirring power 

 
 


